Вопрос задан 15.07.2023 в 10:20. Предмет Математика. Спрашивает Романов Кирилл.

1)|х|=53

2)|х|=300,73)|×|-19,2=04)|×|+45=05)|×|+20,9=226)315-|×|=2887)|×|-74,6=9,48)12|×|=1,29)225:|×|=1,510)-4,84:|×|=-4,311)3|×|+|×|=2012)5|×|-3|×|=3313)19|×|-17=16|×|14)42-63|×|=65|×|​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Забузов Даниил.

СМОТРИ РИСУНОК, ТАМ ВСЕ НАПСАНО


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the given equations, let's go through them one by one:

  1. |x| = 53 This equation states that the absolute value of x is equal to 53. In this case, x can take two possible values: x = 53 or x = -53.

  2. |x| = 300.73 Similar to the previous equation, the absolute value of x is equal to 300.73. Therefore, x can take two possible values: x = 300.73 or x = -300.73.

  3. |x| × -19.2 = 0 Here, we have the absolute value of x multiplied by -19.2, resulting in 0. For the product to be zero, the absolute value of x must be zero as well. Therefore, x = 0.

  4. |x| + 45 = 0 In this equation, the absolute value of x added to 45 equals zero. However, it is not possible for the sum of a positive value (absolute value) and a positive value (45) to be zero. Therefore, there is no solution for this equation.

  5. |x| + 20.9 = 226 Similarly to the previous equation, the sum of a positive value (absolute value of x) and a positive value (20.9) cannot equal 226. Hence, there is no solution for this equation.

  6. 315 - |x| = 288 Here, we have the difference between 315 and the absolute value of x equal to 288. To isolate the absolute value, we subtract 288 from both sides of the equation: -|x| = 288 - 315 -|x| = -27 Now, to find the value of |x|, we multiply both sides by -1: |x| = 27 This equation implies that x can take two possible values: x = 27 or x = -27.

  7. |x| - 74.6 = 9.48 Similar to the previous equation, we can isolate the absolute value by adding 74.6 to both sides: |x| = 9.48 + 74.6 |x| = 84.08 Thus, x can be either x = 84.08 or x = -84.08.

  8. 12 |x| = 1.29 To find the value of |x|, we divide both sides of the equation by 12: |x| = 1.29 / 12 |x| = 0.1075 Therefore, x can be either x = 0.1075 or x = -0.1075.

  9. 225 : |x| = 1.51 To find the value of |x|, we divide 225 by 1.51: |x| = 225 / 1.51 |x| ≈ 149.01 Hence, x can be either x ≈ 149.01 or x ≈ -149.01.

  10. -4.84 : |x| = -4.31 Dividing -4.84 by -4.31 gives: |x| ≈ 1.1237 Therefore, x can be either x ≈ 1.1237 or x ≈ -1.1237.

  11. 3 |x| + |x| = 20 Simplifying the equation, we have: 4 |x| = 20 Dividing both sides by 4: |x| = 5 Thus, x can be either x = 5 or x = -5.

  12. 5 |x| - 3 |x| = 33 Simplifying the equation, we have: 2 |x| = 33 Dividing both sides by 2: |x| = 16.5 Therefore, x can be either x = 16.5 or x = -16.5.

  13. 19 |x| - 17 = 16 |x| + 14 Rearranging the terms, we get: 19 |x| - 16 |x| = 17 + 14 3 |x| = 31 Dividing both sides by 3: |x| = 10.33 Thus, x can be either x = 10.33 or x = -10.33.

  14. 42 - 63 |x| = 65 |x| Rearranging the terms, we get: 63 |x| + 65 |x| = 42 128 |x| = 42 Dividing both sides by 128: |x| ≈ 0.3281 Therefore, x can be either x ≈ 0.3281 or x ≈ -0.3281.

These are the solutions for the given equations.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос