Вопрос задан 15.07.2023 в 00:20. Предмет Математика. Спрашивает Иванов Даниил.

1) sin^2x + sinx + a = 0 (параметр) 2) cos2x - sinx =a (параметр) При всех значениях "а"

развязать уравнение. (2 разных примера если что)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Оразымбаев Райымбек.

1) \ \sin^{2}x + \sin x + a = 0

Замена: \sin x = t, \ -1 \leq t \leq 1

t^{2} + t + a = 0\\D = 1 - 4a

Данное уравнение будет иметь корни, если D \geq 0, то есть 1 - 4a \geq 0; \ a \leq \dfrac{1}{4}

t_{1,2} = \dfrac{-1 \pm \sqrt{1 - 4a} }{2}

Имея два действительных корня, определим, при каких a выполняется неравенство -1 \leq t \leq 1

1.1) \ -1 \leq \dfrac{-1 + \sqrt{1 - 4a} }{2} \leq 1\\-2 \leq -1 + \sqrt{1 - 4a} \leq 2\\-1 \leq \sqrt{1 - 4a} \leq 3\\ 1 - 4a \leq 9\\ - 4a \leq 8\\ a \geq -2

Учитывая a \leq \dfrac{1}{4}, имеем: a \in \bigg[-2; \dfrac{1}{4} \bigg]

1.2) \ -1 \leq \dfrac{-1 - \sqrt{1 - 4a} }{2} \leq 1\\-2 \leq -1 - \sqrt{1 - 4a} \leq 2\\-1 \leq -\sqrt{1 - 4a} \leq 3\\ -3 \leq \sqrt{1 - 4a} \leq 1 \\ 1 - 4a \leq 1\\ - 4a \leq 0\\ a \geq 0

Учитывая a \leq \dfrac{1}{4}, имеем: a \in \bigg[0; \dfrac{1}{4} \bigg]

Обратная замена:

\sin x = \dfrac{-1 + \sqrt{1 - 4a} }{2}\\x = (-1)^{n} \cdot \arcsin \bigg(\dfrac{-1 + \sqrt{1 - 4a} }{2} \bigg) + \pi n, \ n \in Z

\sin x = \dfrac{-1 - \sqrt{1 - 4a} }{2}\\x = (-1)^{k} \cdot \arcsin \bigg(\dfrac{-1 - \sqrt{1 - 4a} }{2} \bigg) + \pi k, \ k \in Z

Ответ: если a \in (-\infty; -2) \cup \bigg(\dfrac{1}{4}; +\infty \bigg), то уравнение не имеет корней; если a \in [-2; 0), то x = (-1)^{n} \cdot \arcsin \bigg(\dfrac{-1 + \sqrt{1 - 4a} }{2} \bigg) + \pi n, \ n \in Z; если a \in \bigg[0; \dfrac{1}{4} \bigg], то x = (-1)^{n} \cdot \arcsin \bigg(\dfrac{-1 + \sqrt{1 - 4a} }{2} \bigg) + \pi n, x = (-1)^{k} \cdot \arcsin \bigg(\dfrac{-1 - \sqrt{1 - 4a} }{2} \bigg) + \\+ \pi k, \ n \in Z, \ k \in Z

2) \ \cos2x - \sin x = a\\1 - 2\sin^{2}x - \sin x = a\\2\sin^{2}x + \sin x + a - 1 = 0

Решаем аналогично:

Замена: \sin x = t, \ -1 \leq t \leq 1

2t^{2} + t + a - 1 = 0\\D = 1 - 8(a - 1) = 1 - 8a + 8 = 9 - 8a \geq 0; \ a \leq \dfrac{9}{8}

t_{1,2} = \dfrac{-1 \pm\sqrt{9 - 8a} }{4}

2.1) \ -1 \leq \dfrac{-1 + \sqrt{9 - 8a} }{4} \leq 1\\-4 \leq -1 +\sqrt{9 - 8a} \leq 4\\-3 \leq \sqrt{9 - 8a} \leq 5\\ 9 - 8a \leq 25\\ -8a \leq 16\\a \geq -2

Учитывая a \leq \dfrac{9}{8}, имеем: a \in \bigg[-2; \dfrac{9}{8} \bigg]

2.2) \ -1 \leq \dfrac{-1 - \sqrt{9 - 8a} }{4} \leq 1\\-4 \leq -1 -\sqrt{9 - 8a} \leq 4\\-3 \leq -\sqrt{9 - 8a} \leq 5 \\ -5 \leq \sqrt{9 - 8a} \leq 3 \\ 9 - 8a \leq 9\\ -8a \leq 0\\a \geq 0

Учитывая a \leq \dfrac{9}{8}, имеем: a \in \bigg[0; \dfrac{9}{8} \bigg]

Обратная замена:

\sin x = \dfrac{-1 +\sqrt{9 - 8a} }{4}\\x = (-1)^{n} \cdot \arcsin \bigg( \dfrac{-1 +\sqrt{9 - 8a} }{4} \bigg) + \pi n, \ n \in Z

\sin x = \dfrac{-1 -\sqrt{9 - 8a} }{4}\\x = (-1)^{k} \cdot \arcsin \bigg( \dfrac{-1 -\sqrt{9 - 8a} }{4} \bigg) + \pi k, \ k \in Z

Ответ: если a \in (-\infty; -2) \cup \bigg(\dfrac{9}{8}; +\infty \bigg), то уравнение не имеет корней; если a \in [-2; 0), то x = (-1)^{n} \cdot \arcsin \bigg(\dfrac{-1 +\sqrt{9 - 8a} }{4} \bigg) + \pi n, \ n \in Z; если a \in \bigg[0; \dfrac{9}{8} \bigg], то x = (-1)^{n} \cdot \arcsin \bigg( \dfrac{-1 +\sqrt{9 - 8a} }{4} \bigg) + \pi n, \ x = (-1)^{k} \cdot \arcsin \bigg( \dfrac{-1 -\sqrt{9 - 8a} }{4} \bigg) + \\+ \pi k, \ n \in Z, \ k \in Z

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассмотрим каждое уравнение по отдельности и найдем решения для различных значений параметра "a".

  1. sin^2(x) + sin(x) + a = 0: Для начала, заметим, что это квадратное уравнение относительно sin(x). Мы можем решить его, используя квадратное уравнение.

Используя квадратное уравнение, мы получаем: sin(x) = (-1 ± √(1 - 4a)) / 2.

a) Когда a = 0: sin(x) = (-1 ± √1) / 2 = -1 или 0. Решениями будут x = arcsin(-1) и x = arcsin(0), что соответствует x = -π/2 и x = 0.

b) Когда a ≠ 0: sin(x) = (-1 ± √(1 - 4a)) / 2. В этом случае, существует два различных решения для каждого значения "a". Решения могут быть найдены, используя обратные функции синуса.

  1. cos(2x) - sin(x) = a: Рассмотрим это уравнение и найдем решения для различных значений параметра "a".

a) Когда a = 0: cos(2x) - sin(x) = 0. Мы можем использовать тригонометрические тождества для преобразования этого уравнения: cos(2x) = sin(x).

Снова используя тригонометрические тождества, мы получаем: 1 - 2sin^2(x) = sin(x).

Это уравнение также является квадратным относительно sin(x). Решая его, мы получаем: sin(x) = 1/2 или sin(x) = -1.

Решениями будут x = arcsin(1/2) и x = arcsin(-1), что соответствует x = π/6 и x = -π/2.

b) Когда a ≠ 0: cos(2x) - sin(x) = a. В этом случае, решения могут быть найдены численно или с использованием графиков итерации.

Обратите внимание, что в обоих уравнениях может быть больше решений, но здесь приведены лишь некоторые основные решения для каждого значения параметра "a".

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос