
(4×|x-1|+1/2)^2=11×(x-1)^2+5/4


Ответы на вопрос

Ответ: 1 1/5, 4/5
Пошаговое объяснение:
16*|x-1|^2+2*4*|x-1|*1/2+1/4=11*|x-1|^2+5/4, 5*|x-1|^2+4*|x-1|-1=0, пусть |x-1|=y, y>=0, тогда 5y^2+4y-1=0, D=36, y= -4-6 /10=-1 не удовл., у=1/5,
|x-1|=1/5, x-1=1/5, x=1 1/5, x-1=-1/5, x=1-1/5=4/5, использовали ф-лу
(а+в)^2=a^2+2ab+b^2), (x-1)^2=|x-1|^2



To solve the equation (4×|x-1|+1/2)^2 = 11×(x-1)^2 + 5/4, we need to follow these steps:
Step 1: Simplify both sides of the equation. Step 2: Solve for x.
Let's start with Step 1:
(4×|x-1| + 1/2)^2 = 11×(x-1)^2 + 5/4
Step 1: Simplify both sides: Expanding the square on the left side: (4×|x-1|)^2 + 2×(4×|x-1|)×(1/2) + (1/2)^2 = 11×(x-1)^2 + 5/4
Simplify: 16×|x-1|^2 + 2×(2×|x-1|) + 1/4 = 11×(x-1)^2 + 5/4
Now, simplify the absolute value expression: Remember that |a| = a if a ≥ 0 and |a| = -a if a < 0.
Case 1: (x - 1) ≥ 0 |x - 1| = x - 1
Case 2: (x - 1) < 0 |x - 1| = -(x - 1) = -x + 1
So, we have two cases to consider:
Case 1: (x - 1) ≥ 0 The equation becomes: 16×(x - 1)^2 + 4×(x - 1) + 1/4 = 11×(x - 1)^2 + 5/4
Case 2: (x - 1) < 0 The equation becomes: 16×(-x + 1)^2 + 4×(-x + 1) + 1/4 = 11×(-x + 1)^2 + 5/4
Step 2: Solve for x in both cases.
Case 1: (x - 1) ≥ 0 16×(x - 1)^2 + 4×(x - 1) + 1/4 = 11×(x - 1)^2 + 5/4
Let's solve this equation:
16×(x - 1)^2 + 4×(x - 1) + 1/4 = 11×(x - 1)^2 + 5/4
Expand and simplify: 16×(x^2 - 2x + 1) + 4x - 4 + 1/4 = 11×(x^2 - 2x + 1) + 5/4
16x^2 - 32x + 16 + 4x - 4 + 1/4 = 11x^2 - 22x + 11 + 5/4
Combine like terms: 16x^2 - 32x + 4x + 16 - 4 + 1/4 = 11x^2 - 22x + 11 + 5/4
16x^2 - 28x + 13/4 = 11x^2 - 22x + 16/4 + 5/4
16x^2 - 28x + 13/4 = 11x^2 - 22x + 21/4
Move all terms to one side of the equation: 16x^2 - 11x^2 - 28x + 22x + 13/4 - 21/4 = 0
5x^2 - 6x - 8/4 = 0
5x^2 - 6x - 2 = 0
Now, you can use the quadratic formula to solve for x:
x = (-b ± √(b^2 - 4ac)) / 2a
where a = 5, b = -6, and c = -2
x = (6 ± √((-6)^2 - 4×5×(-2))) / 2×5
x = (6 ± √(36 + 40)) / 10
x = (6 ± √76) / 10
x = (6 ± √(4×19)) / 10
x = (6 ± 2√19) / 10
x = (3 ± √19) / 5
So, in Case 1, the solutions for x are: x = (3 + √19) / 5 and x = (3 - √19) / 5
Now, let's proceed to Case 2: (x - 1) < 0
16×(-x + 1)^2 + 4×(-x + 1) + 1/4 = 11×(-x + 1)^2 + 5/4
Expand and simplify: 16×(x^2 - 2x + 1) - 4x + 4 + 1/4 = 11×(x^2 - 2x + 1) + 5/4
16x^2 - 32x + 16 - 4x + 4 + 1/4 = 11x^2 - 22x + 11 + 5/4
16x^2 - 36x + 17/4 = 11x^2 - 22x + 16/4 + 5/4
16x^2 - 36x + 17/4 = 11x^2 - 22x + 21/4
Move all terms to one side of the equation: 16x^2 - 11x^2 - 36x + 22x + 17/4 - 21/4 = 0
5x^2 - 14x - 4/4 = 0
5x^2 - 14x - 1 = 0
Using the quadratic formula again:
x = (14 ± √((-14)^2 - 4×5×(-1))) / 2×5
x = (14 ± √(196 + 20)) / 10
x = (14 ± √216) / 10
x = (14 ± √(36×6)) / 10
x = (14 ± 6√6) / 10
x = (7 ± 3√6) / 5
So, in Case 2, the solutions for x are: x = (7 + 3√6) / 5 and x = (7 - 3√6) / 5
Therefore, the complete solution to the equation is: x = (3 + √19) / 5, x = (3 - √19) / 5, x = (7 + 3√6) / 5, and x = (7 - 3√6) / 5.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili