
Найти максимум и минимум функции 2+sinx


Ответы на вопрос





To find the maximum and minimum of the function , we need to analyze its behavior and find critical points.
Step 1: Find the derivative of :
Step 2: Find critical points by setting the derivative to zero and solving for :
The critical points occur when is an odd multiple of :
Step 3: Determine the nature of the critical points by looking at the second derivative:
Step 4: Evaluate the second derivative at the critical points:
Now, we know that and . Since is periodic with a period of , it alternates between 1 and -1.
Thus, when is even, , and when is odd, .
Step 5: Identify maximum and minimum points:
- Maximum points occur where the second derivative changes from negative to positive, i.e., when changes from even to odd.
- Minimum points occur where the second derivative changes from positive to negative, i.e., when changes from odd to even.
Step 6: Evaluate at the critical points to find the maximum and minimum values.
Let's find the maximum and minimum values:
- Maximum points: When is even, i.e.,
Maximum value:
- Minimum points: When is odd, i.e.,
Minimum value:
Therefore, the maximum value of the function is 3, and the minimum value is 1.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili