Вопрос задан 12.07.2023 в 19:50.
Предмет Математика.
Спрашивает Пантелеев Андрей.
Помогите найти производную. y=cos(9x-11)Можно пожалуйста с решением)
Ответы на вопрос
Отвечает Лемешевский Андрей.
Решение задания приложено. Здесь решение простое. Сразу пишем ответ.

Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Да, конечно! Для нахождения производной функции y = cos(9x - 11) используем правило дифференцирования композиции функций (chain rule). По этому правилу производная композиции двух функций равна произведению производной внешней функции на производную внутренней функции.
Шаг 1: Найдем производную внутренней функции (9x - 11) по переменной x: (dy/dx) = d/dx(9x - 11) = 9.
Шаг 2: Найдем производную косинуса (внешней функции) по своему аргументу: d/dx(cos u) = -sin u.
Шаг 3: Теперь применим правило композиции функций и перемножим результаты из шагов 1 и 2: (dy/dx) = 9 * (-sin(9x - 11)).
Таким образом, производная функции y = cos(9x - 11) равна -9 * sin(9x - 11).
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
