
Помогите решить задачу с помощью уравнений пешеход проходит расстояние от села Счастливое до села
Весёлое за 2 часа а велосипедист За 4,8 часа Найдите скорость велосипедиста и скорость пешехода, если известно, что скорость пешехода на 7 км/ч меньше, чем скорость велосипедиста.

Ответы на вопрос

Ответ:
5 км/ч пешеход 12 км/ч велосипедист
Пошаговое объяснение:
пусть x скорость пешехода , тогда x + 7 скорость велос.
составим и решим уровнение
4.8 × x = 2 ×( x+7)
4.8x = 2x +14
4.8x -2x = 14
2.8 x = 14
x = 14 : 2.8
x = 5 км/ч
5 +7 = 12 км / ч



Пусть скорость велосипедиста будет обозначена как V, а скорость пешехода - V-7 (так как скорость пешехода на 7 км/ч меньше скорости велосипедиста).
Мы знаем, что пешеход проходит расстояние между селами за 2 часа, а велосипедист - за 4,8 часа. Расстояние одинаковое для обоих:
Расстояние = Скорость × Время
Для пешехода: Расстояние = (V-7) × 2
Для велосипедиста: Расстояние = V × 4,8
Так как оба расстояния одинаковы, мы можем приравнять их:
(V-7) × 2 = V × 4,8
Раскроем скобки и решим уравнение:
2V - 14 = 4,8V
2V - 4,8V = 14
-2,8V = 14
V = 14 / -2,8
V = -5
Мы получили отрицательную скорость, что нереалистично в данной ситуации. Возможно, в условии была допущена ошибка.
Пожалуйста, проверьте условие задачи и уточните, если есть какие-либо дополнительные сведения.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili