
Найдите значение котангенса α, если известно, чтоcos α=0,8, α ∈Iчетверти


Ответы на вопрос

Пошаговое объяснение:
В задании требуется определить значение тригонометрического выражения sin(2 * α) по известному значению cosα = –0,8. Кроме того, в задании утверждается, что угол α принадлежит к I координатной четверти, то есть, справедливо следующее двойное неравенство: π < α < 3 * π/2.
Как известно в I координатной четверти sinα < 0 и cosα < 0. Воспользуемся формулой sin2α + cos2α = 1 (основное тригонометрическое тождество), которую перепишем в виде: cos2α = 1 – sin2α. С учётом того, что угол α принадлежит к I координатной четверти, имеем: cosα = –√(1 – sin2α). Тогда, cosα = –√(1 – (–0,8)2) = –√((1 – 0,64) = –√(0,36) = –0,6.
Применяя формулу 2 * sinα * cosα (синус двойного угла), вычислим sin(2 * α) = 2 * (–0,8) * (–0,6) = 0,96.
Ответ: 0,96.



Известно, что и находится в первой четверти.
Сначала найдем синус по определению:
Так как находится в первой четверти, то и синус положителен.
Теперь можем найти котангенс :
Итак, .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili