
3tg(-П/6)ctgП/6+sin3П/2 - 4cos П/4


Ответы на вопрос

Ответ:
Пошаговое объяснение:




Let's break down the expression step by step:
3tg(-π/6): The term "tg" represents the tangent function. Since tangent is periodic with a period of π, we can simplify this expression by substituting -π/6 with its equivalent angle within one period, which is 11π/6: 3tg(-π/6) = 3tg(11π/6)
ctg(π/6): The term "ctg" represents the cotangent function. Cotangent is the reciprocal of tangent, so we can calculate it by taking the reciprocal of the tangent of the angle π/6: ctg(π/6) = 1/tg(π/6) = 1/tan(π/6)
sin(3π/2): The term "sin" represents the sine function. Sine is periodic with a period of 2π, so we can simplify this expression by finding the equivalent angle within one period, which is π/2: sin(3π/2) = sin(π/2)
cos(π/4): The term "cos" represents the cosine function. Cosine is also periodic with a period of 2π, so we can simplify this expression by finding the equivalent angle within one period, which is π/4: cos(π/4)
Now, let's substitute the simplified values back into the original expression:
3tg(11π/6) + 1/tg(π/6) + sin(π/2) - 4cos(π/4)
You can evaluate this expression by calculating the tangent and cosine values for the corresponding angles and then performing the addition and subtraction operations.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili