Вопрос задан 29.06.2023 в 23:44. Предмет Математика. Спрашивает Коновалюк Антон.

Книга дороже тетради на 3 рубля 20 копеек.книга и тетрадь вместе стоят 3 рубля и 80 копеек. Сколько

стоят книга и тетрадь каждая в отдельности?решите задачу двумя способами-с помощью линейного уравнения с одной неизвестным и с помощью системы линейных уравнений с двумя неизвестными
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ульянова Ангелина.

Ответ:

цена тетради 30 коп.,цена книги 3 руб.50 коп

Пошаговое объяснение:


0 0
Отвечает Хорошилов Виктор.

Ответ:

Пошаговое объяснение:

Пусть тетрадь стоит х руб, тогда книга -  (х+3,2) руб

х+х+3,2=3,8

2х=3,8-3,2=0,6 руб=60 коп.    ;х=0,6/2=0,3=30 .коп стоит тетрадь

Книга стоит:

0,3+3,2=3,5руб=3руб 50 коп.

Второй способ:  ( система линейных уравнений с двумя неизвестными)

х руб- стоимость одной тетради; у руб. - стоимость   одной книги.

{х+у=3,8

{у=х+3,2

Решаем методом подстановки.

х+х+3,2=3,8

2х=3,8-3,2=0,6

х=0,3 руб стоимость   одной тетради.

у=0,3+3,2=3,5руб. стоимость тетради.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим эту задачу двумя способами.

Первый способ (с помощью линейного уравнения с одной неизвестной):

Обозначим стоимость книги как "x" рублей, а стоимость тетради как "y" рублей.

Условие гласит, что "Книга дороже тетради на 3 рубля и 20 копеек", что можно записать в виде уравнения:

  1. x = y + 3 рубля 20 копеек

Также известно, что "книга и тетрадь вместе стоят 3 рубля и 80 копеек", что можно записать в виде второго уравнения:

  1. x + y = 3 рубля 80 копеек

Теперь у нас есть система из двух уравнений. Мы можем решить ее, подставив значение x из первого уравнения во второе:

(y + 3 рубля 20 копеек) + y = 3 рубля 80 копеек

Теперь у нас есть одно уравнение с одной неизвестной (y):

2y + 3 рубля 20 копеек = 3 рубля 80 копеек

Выразим y:

2y = 3 рубля 80 копеек - 3 рубля 20 копеек 2y = 60 копеек

y = 30 копеек (половина рубля)

Теперь, когда мы знаем стоимость тетради (y), мы можем использовать первое уравнение для нахождения стоимости книги (x):

x = 30 копеек + 3 рубля 20 копеек x = 3 рубля 50 копеек

Итак, тетрадь стоит 30 копеек, а книга стоит 3 рубля 50 копеек.

Второй способ (с помощью системы линейных уравнений с двумя неизвестными):

Мы уже имеем два уравнения:

  1. x = y + 3 рубля 20 копеек
  2. x + y = 3 рубля 80 копеек

Давайте решим эту систему уравнений с помощью метода сложения/вычитания. Выразим x из первого уравнения и подставим его во второе:

x = y + 3 рубля 20 копеек

Теперь подставим это значение x во второе уравнение:

(y + 3 рубля 20 копеек) + y = 3 рубля 80 копеек

Раскроем скобки и упростим:

2y + 3 рубля 20 копеек = 3 рубля 80 копеек

Теперь выразим y:

2y = 3 рубля 80 копеек - 3 рубля 20 копеек 2y = 60 копеек

y = 30 копеек (половина рубля)

Теперь, когда мы знаем стоимость тетради (y), мы можем использовать первое уравнение для нахождения стоимости книги (x):

x = y + 3 рубля 20 копеек x = 30 копеек + 3 рубля 20 копеек x = 3 рубля 50 копеек

Итак, тетрадь стоит 30 копеек, а книга стоит 3 рубля 50 копеек, что соответствует результатам, полученным первым способом.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос