Вопрос задан 29.06.2023 в 11:06. Предмет Математика. Спрашивает Кокунов Данила.

В урне 3 белых шара и 5 черных. Наудачу взяты 4 шара. Найти вероятность того, что среди них:а.

один черный;б. хотя бы один белый;в. белых и черных поровну.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Назаров Ваня.

Ответ:

один черный

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения вероятности каждого из этих событий, давайте рассмотрим их поочередно.

a. Вероятность того, что среди 4 взятых шаров будет один черный: Сначала мы выбираем один черный шар из 5 черных шаров, а затем три белых шара из 3 белых шаров. Вероятность выбрать один черный и три белых шара можно выразить как: P(один черный) = (Количество способов выбрать 1 черный из 5) * (Количество способов выбрать 3 белых из 3) / (Количество способов выбрать 4 шара из 8)

Количество способов выбрать 1 черный из 5: C(5, 1) = 5 Количество способов выбрать 3 белых из 3: C(3, 3) = 1 Количество способов выбрать 4 шара из 8: C(8, 4) = 70

Теперь вычислим вероятность: P(один черный) = (5 * 1) / 70 = 5/70 = 1/14

b. Вероятность того, что среди 4 взятых шаров будет хотя бы один белый. Это можно рассмотреть как дополнение к вероятности того, что все 4 шара будут черными.

P(хотя бы один белый) = 1 - P(все 4 черных)

P(все 4 черных) = (Количество способов выбрать 4 черных из 5) * (Количество способов выбрать 0 белых из 3) / (Количество способов выбрать 4 шара из 8)

Количество способов выбрать 4 черных из 5: C(5, 4) = 5 Количество способов выбрать 0 белых из 3: C(3, 0) = 1 Количество способов выбрать 4 шара из 8: C(8, 4) = 70

Теперь вычислим P(хотя бы один белый): P(хотя бы один белый) = 1 - (5 * 1) / 70 = 1 - 5/70 = 1 - 1/14 = 13/14

c. Вероятность того, что среди 4 взятых шаров будет поровну белых и черных. Это можно рассмотреть как количество способов выбрать 2 белых из 3 и 2 черных из 5, деленное на общее количество способов выбрать 4 шара из 8.

P(поровну белых и черных) = (Количество способов выбрать 2 белых из 3) * (Количество способов выбрать 2 черных из 5) / (Количество способов выбрать 4 шара из 8)

Количество способов выбрать 2 белых из 3: C(3, 2) = 3 Количество способов выбрать 2 черных из 5: C(5, 2) = 10 Количество способов выбрать 4 шара из 8: C(8, 4) = 70

Теперь вычислим P(поровну белых и черных): P(поровну белых и черных) = (3 * 10) / 70 = 30/70 = 3/7

Итак, вероятности составляют: a. Вероятность одного черного: 1/14 b. Вероятность хотя бы одного белого: 13/14 c. Вероятность поровну белых и черных: 3/7

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос