Вопрос задан 22.06.2023 в 18:05. Предмет Математика. Спрашивает Клабукова Аленка.

Сергей разделил задуманное им натуральное число на 6, потом разделил задуманное число на 7, а затем

разделил задуманное число на 8, получив в каждом из случаев некоторый остаток. Сумма этих остатков равна 18. Какой остаток даёт задуманное Сергеем число при делении на 28?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петрова Оксана.

Ответ:

Задуманное Сергеем число при делении на 28 дает остаток 27

Пошаговое объяснение:

Сергей разделил задуманное им натуральное число на 6, потом разделил задуманное число на 7, а затем разделил задуманное число на 8, получив в каждом из случаев некоторый остаток.

Сумма этих остатков равна 18.

Остатки при делении на 6 1,2,3,4,5

Остатки при делении на 7  1,2,3,4,5,6

Остатки при делении на  8   1,2,3,4,5,6,7

5+6+7=18 -Это значит,что все остатки были максимальные.

Задуманное число на 1 меньше, чем наименьшее общее кратное 6,7 и 8.То есть максимальный остаток из возможных равный 27.

Найдем задуманное число и проверим остаток.

 6=2*3     7=1*7   8=2*2*2  

НОК  2*3*7*2*2=168  

Задуманное число на 1 меньше Н.О.К.

168-1=167

167:6=27(ост 5)

167:7=23(ост 6)

167:8=20(ост 7)

167:28=(140+27):28=5(ост 27)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим задуманное число как x. Мы знаем, что:

x % 6 = a, где a - остаток от деления на 6. x % 7 = b, где b - остаток от деления на 7. x % 8 = c, где c - остаток от деления на 8. a + b + c = 18

Мы хотим найти остаток от деления x на 28, то есть x % 28.

Давайте рассмотрим каждое из уравнений в отдельности.

  1. x % 6 = a, это означает, что x = 6k + a для некоторого целого числа k.

  2. x % 7 = b, это означает, что x = 7m + b для некоторого целого числа m.

  3. x % 8 = c, это означает, что x = 8n + c для некоторого целого числа n.

Теперь мы можем объединить эти уравнения:

6k + a = 7m + b = 8n + c = x

Мы знаем, что a + b + c = 18, поэтому a + b + c = 6k + 7m + 8n.

Теперь давайте найдем остаток от деления этой суммы на 28:

(a + b + c) % 28 = (6k + 7m + 8n) % 28

Так как 6k + 7m + 8n равно x, это уравнение можно записать как:

x % 28

Итак, остаток от деления задуманного числа x на 28 равен x % 28. Мы знаем, что a + b + c = 18, и поэтому x % 28 = 18.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос