Вопрос задан 18.06.2023 в 22:53. Предмет Математика. Спрашивает Глебов Денис.

При каком значении a вектор m{2; -1; 0} перпендикулярен вектору n{а; 8; 1} ?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ашомко Дмитрий.

Ответ:

a=4

Пошаговое объяснение:

Условие перпендикулярности:

x1x2+y1y2+z1z2=0

2a-1*8+0*1=0

a=4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы вектор m{2; -1; 0} был перпендикулярен вектору n{а; 8; 1}, их скалярное произведение должно равняться нулю. Скалярное произведение двух векторов определяется следующей формулой:

m • n = (2 * а) + (-1 * 8) + (0 * 1) = 2а - 8

Для того чтобы это значение было равно нулю, нужно решить уравнение:

2а - 8 = 0

Добавим 8 к обеим сторонам уравнения:

2а = 8

Разделим обе стороны на 2:

а = 4

Таким образом, для вектора m{2; -1; 0} быть перпендикулярным вектору n{а; 8; 1}, значение а должно быть равно 4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос