
Реши задачу и запиши ответ Сумма трёх чисел равна 240. Первое число составляет 10 % этой суммы.
Второе число в три раза больше первого. Найди третье число. Ответ: СРОЧНО!! ДАЮ 40 БАЛЛОВ

Ответы на вопрос

Ответ:
первое 24
второе 72
третье 144
Пошаговое объяснение:
не знаю правильно ли?



Ответ:
Всего-240
1число-10%
2число-? В 3 раза больше 1числа
1) 240-10%=216
2)240-216=24-1число
3)24*3=72
4)240-(24+72)=144-3число
Ответ: первое число-24, второе число-72, третье число-144



Problem Analysis
We are given that the sum of three numbers is 240. The first number is 10% of this sum, and the second number is three times the first number. We need to find the third number.Solution
Let's solve the problem step by step.1. Let's represent the three numbers as x, y, and z. 2. We know that the sum of the three numbers is 240, so we can write the equation: x + y + z = 240. 3. We are also given that the first number is 10% of the sum, so we can write the equation: x = 0.1 * (x + y + z). 4. Additionally, we know that the second number is three times the first number, so we can write the equation: y = 3x. 5. We need to find the value of the third number, which is z.
Now, let's solve these equations to find the values of x, y, and z.
From equation 3, we have: x = 0.1 * (x + y + z)
Expanding the equation, we get: x = 0.1x + 0.1y + 0.1z
Simplifying the equation, we get: 0.9x = 0.1y + 0.1z
Dividing both sides of the equation by 0.9, we get: x = (0.1y + 0.1z) / 0.9
From equation 4, we have: y = 3x
Substituting the value of x from equation 3 into equation 4, we get: y = 3 * [(0.1y + 0.1z) / 0.9]
Simplifying the equation, we get: y = (0.3y + 0.3z) / 0.9
Multiplying both sides of the equation by 0.9, we get: 0.9y = 0.3y + 0.3z
Subtracting 0.3y from both sides of the equation, we get: 0.6y = 0.3z
Dividing both sides of the equation by 0.3, we get: 2y = z
Now, we have two equations: x = (0.1y + 0.1z) / 0.9 2y = z
We can substitute the value of z from the second equation into the first equation to solve for x.
Substituting 2y for z in the first equation, we get: x = (0.1y + 0.1(2y)) / 0.9
Simplifying the equation, we get: x = (0.1y + 0.2y) / 0.9
Combining like terms, we get: x = 0.3y / 0.9
Dividing both sides of the equation by 0.3, we get: x = y / 3
Now, we have three equations: x = y / 3 y = 3x 2y = z
We can substitute the value of x from the first equation into the second equation to solve for y.
Substituting y/3 for x in the second equation, we get: y = 3(y/3)
Simplifying the equation, we get: y = y
This equation tells us that y can be any value. Let's choose a value for y and solve for x and z.
Let's choose y = 3.
Substituting y = 3 into the first equation, we get: x = 3 / 3 x = 1
Substituting y = 3 into the third equation, we get: 2(3) = z 6 = z
Therefore, when y = 3, the values of x and z are 1 and 6, respectively.
So, the third number is 6.
Answer
The third number is 6.

Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili