
Найдите S107, если a1 = 7, a107 = 903. Ответ запишите в виде числа.


Ответы на вопрос

Ответ:
48 685
Пошаговое объяснение:



To find the value of S107, given that a1 = 7 and a107 = 903, we can use the formula for the nth term of an arithmetic sequence:
an = a1 + (n - 1)d
where an is the nth term, a1 is the first term, n is the position of the term, and d is the common difference between consecutive terms.
In this case, we are given a1 = 7 and a107 = 903. We need to find the value of S107, which represents the sum of the first 107 terms of the arithmetic sequence.
To find the common difference, we can subtract a1 from a107 and divide by 106 (the number of terms between a1 and a107):
d = (a107 - a1) / (107 - 1) d = (903 - 7) / 106 d = 896 / 106 d ≈ 8.45
Now that we have the common difference, we can find the value of S107 using the formula for the sum of an arithmetic series:
Sn = (n/2)(a1 + an)
where Sn is the sum of the first n terms.
Substituting the given values, we have:
S107 = (107/2)(7 + a107)
To find a107, we can use the formula for the nth term:
a107 = a1 + (107 - 1)d a107 = 7 + 106d
Substituting this into the formula for S107, we get:
S107 = (107/2)(7 + 7 + 106d) S107 = (107/2)(14 + 106d) S107 = (107/2)(14 + 106 * 8.45) S107 ≈ (107/2)(14 + 896.3) S107 ≈ (107/2)(910.3) S107 ≈ (107 * 910.3) / 2 S107 ≈ 97479.05
Therefore, the value of S107 is approximately 97479.05.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili