Вопрос задан 03.06.2018 в 10:22. Предмет Геометрия. Спрашивает Разумовская Наташа.

Точки А и В лежат по разные стороны от прямой,АМ и ВК -перпендикуляры к этой прямой .Докажите что

треугольник АМК равен треугольнику ВКМ ,если угол МАК равен углу МВК
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Махмутова Катя.

Две прямые, перпендикулярные к третьей, не пересекаются, значит AMIIBK.
<1=<MAK как накрест лежащие углы при пересечении двух параллельных прямых АМ и ВК секущей АК. Значит
<AKM=90-<1=90-<MAK
<2=<MBK как накрест лежащие углы при пересечении двух параллельных прямых АМ и ВК секущей ВМ. Значит
<BMK=90-<2=90-<MBK 
По условию <MAK=<MBK, значит <AKM=<BMK
Прямоугольные треугольники АМК и ВКМ равны, таким образом, по катету и прилежащему к нему острому углу: катет МК - общий, острые углы АКМ и ВМК равны.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос