Вопрос задан 03.06.2018 в 01:25. Предмет Геометрия. Спрашивает Шкарин Матвей.

Тупой угол со сторонами, длины которых равны 3 и 6, вписан в окружность радиуса корень из 21.

Определите величину дуги, на которую он опирается.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шипілова Марта.

Вся окружность, включающая искомую дугу L равна C=2πR=6,283*√21=28,79.
Если рассматривать заданные стороны тупого угла а=3 и b=6, как хорды
центральных углов окружности α  и β соответственно, то как известно
a=2Rsin(α/2), b=2Rsin(β/2). Отсюда следует sin(α/2)=3/9,17=0,327, α/2=19, α=38
sin(β/2)=6/9,17=0,654, β/2=41, β=82, α+β=120 . Величина угловой меры дуги, на которую опирается вписанный тупой угол 120 градусов равна 120*2=240.
При длине всей окружности С=28,79, искомая ее часть L=(2/3)28,79=19,19.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос