Вопрос задан 03.05.2020 в 14:17. Предмет Геометрия. Спрашивает Тюрин Артём.

Найдите координаты точек пересечения двух окружностей: x²+y²=1, x²+y²-2x+y-2=0 Правильный ответ:

(0;1) и (-4/5;-3/5) Но у меня получаются и другие значения y (ведь квадратом могут быть два, различные по модулю, числа): -1 и 3/5 Почему и как правильно их отсеять? Может я чего-то не понимаю?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Беркут Иван.
Вычитая из второго уравнения первое, получаем -2x+y -1=0; первоначальная система из двух уравнений равносильна системе из первого уравнения и полученного y=2x +1. Подставляя в первое уравнение вместо y выражение 2x +1, получаем квадратное уравнение относительно x:

x^2+(2x+1)^2=1; 5x^2+4x=0; x=0 (⇒y=1) или x= - 4/5 (⇒y=-3/5).
 Таким образом, официальный ответ оказался правильным. 

Каким образом Вы получили свои числа я не понимаю. Но отсеять их просто. Надо подставить в оба уравнения, например, y= -1 и найти из каждого x. Если значения x окажутся разными, тогда y= -1 Вы отбросите. Аналогично поступите со вторым значением y. Доделаем для значения y= - 1 до конца. Из первого уравнения получаем x=0; из второго 
x^2-2x-2=0; очевидно, x=0 корнем этого уравнения не является. Вот мы y= -1  и забраковали. y=3/5 забракуйте сами
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос