Вопрос задан 22.04.2020 в 05:48.
Предмет Геометрия.
Спрашивает Мазур Оля.
Из точки к плоскости проведены перпендикуляр и наклонная длина которой равна корень из 89. найдите
длину проекции наклонной на эту плоскоть, если она длиннее перпендикуляра на 3Ответы на вопрос
Отвечает Созина Виолетта.
Обозначим проекцию наклонной на плоскость за х.
По условию задания длина перпендикуляра равна х - 3.
По Пифагору (√89)² = х² + (х - 3)².
89 = х² + х² - 6х + 9.
Получили квадратное уравнение:
2х² - 6х - 80 = 0 или
х² - 3х - 40 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-3)^2-4*1*(-40)=9-4*(-40)=9-(-4*40)=9-(-160)=9+160=169;
Дискриминант больше 0, уравнение имеет 2 корня:x₁=(√169-(-3))/(2*1)=(13-(-3))/2=(13+3)/2=16/2=8;x₂=(-√169-(-3))/(2*1)=(-13-(-3))/2=(-13+3)/2=-10/2=-5.
Значение х = -5 отбрасываем.
Ответ: проекция наклонной на плоскость равна 8.
По условию задания длина перпендикуляра равна х - 3.
По Пифагору (√89)² = х² + (х - 3)².
89 = х² + х² - 6х + 9.
Получили квадратное уравнение:
2х² - 6х - 80 = 0 или
х² - 3х - 40 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-3)^2-4*1*(-40)=9-4*(-40)=9-(-4*40)=9-(-160)=9+160=169;
Дискриминант больше 0, уравнение имеет 2 корня:x₁=(√169-(-3))/(2*1)=(13-(-3))/2=(13+3)/2=16/2=8;x₂=(-√169-(-3))/(2*1)=(-13-(-3))/2=(-13+3)/2=-10/2=-5.
Значение х = -5 отбрасываем.
Ответ: проекция наклонной на плоскость равна 8.
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
