Вопрос задан 08.04.2020 в 22:25. Предмет Геометрия. Спрашивает Филатов Алексей.

15 БАЛЛОВ Известно, что векторы а и a+b коллинеарны. Коллинеарны ли векторы a и b? Подробно

объяснить (Можно с рисунком) (И, пожалуйста, не берите ответы из интернета...)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Крек Полина.

Ответ:

Да, коллинеарны.

Объяснение:

По условию векторы a и b - коллинеарные векторы.

Пусть,

a={x1;y1;z1}

b={x2;y2;z2}

a+b={x1+x2;y1+y2;z1+z2}

Тогда по условию коллинеарности

x1/x2=y1/y2=z1/z2=k

тогда координаты вектора b можно переписать в виде:

b={k*x1;k*y1;k*z1}

Вектор a+b примет вид:

a+b={x1+k*x1;y1+k*y1;z1+k*z1}

Проверим выполняется ли условие коллинеарности:

x1/(x1+k*x1)=y1/(y1+k*x1)=z1/(z1+k*z1)

x1/(x1*(k+1))=y1/(y1*(k+1))=z1/(z1*(k+1))

1/(k+1)=1/(k+1)=1/(k+1)

Соотношения равны ⇒ условие коллинеарности соблюдено и вектора коллинеарны

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос