Вопрос задан 24.05.2018 в 05:24.
Предмет Геометрия.
Спрашивает Хорошун Настя.
В сосуде имеющим форму конуса уровень жидкости достигает 1/3 высоты. Объем жидкости равен 12 мл.
Сколько мл нужно долить чтобы полностью наполнить сосуд?Ответы на вопрос
Отвечает Белоусов Семён.
Vконуса=(1/3)Sосн*H
V=(1/3)*πR²H
поверхность жидкости отсекает от конического сосуда конус подобный данному. r=(1/3)R
h=(1/3)H
Vжидкости=(1/3)π(R/3)² *(H/3)
Vж=(1/27)*[(1/3)*R²H]
Vж=(1/27)*V к
Vж/Vк=1/27
12/Vк=1/27
Vк=324
324-12=312 мл нужно долить
Отвечает Попова Лера.
Вариант решения.
Жидкость, налитая в сосуд конической формы, «отсекает» от него подобное тело, т.е конус меньшего размера.
Объемы подобных тел относятся как куб коэффициента подобия их линейных размеров.
Высоты части сосуда с жидкостью и всего сосуда относятся как 1/3, т.е. k=1/3.
Объемы V1:V2= k³=(1/3)³ =1/27
1/27=12 мл ⇒ 1 целая=27/27 и в 27 раз больше по объему.
Объем полного сосуда 12*27=324 мл
В сосуде уже есть 12 мл, следовательно, долить нужно
324-12=312 мл

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
