Вопрос задан 03.05.2019 в 06:12. Предмет Геометрия. Спрашивает Авдовченко Маргарита.

Основание прямой призмы правильного треугольника со стороной 6 см.Высота призмы равна 10см.Найдите

объем призмы
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тилинька Орест.

V=Sосн*h

Sосн=1/2 а*в=1/2 36=18,т.к. прав. треуг,все стороны и углы равны

 

V=18*10=180

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Расчет объема прямоугольной призмы

Для расчета объема прямоугольной призмы с правильным треугольным основанием и высотой известны следующие параметры: - Сторона основания: 6 см - Высота призмы: 10 см

Формула для расчета объема прямоугольной призмы

Объем прямоугольной призмы можно найти по формуле: V = S * h, где V - объем, S - площадь основания, h - высота.

Расчет площади основания

Для правильного треугольника с стороной a, площадь можно найти по формуле: S = (a^2 * sqrt(3)) / 4.

Подставляя значение стороны a = 6 см в формулу, получаем: S = (6^2 * sqrt(3)) / 4 = (36 * 1.732) / 4 ≈ 15.588 см^2.

Расчет объема призмы

Теперь, используя найденное значение площади основания и известную высоту, можем найти объем призмы: V = S * h = 15.588 см^2 * 10 см = 155.88 см^3.

Ответ

Таким образом, объем прямоугольной призмы с правильным треугольным основанием и высотой 10 см равен примерно 155.88 кубическим сантиметрам.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос