Вопрос задан 02.05.2019 в 18:19. Предмет Геометрия. Спрашивает Клиш Юля.

Длина окружности основания конуса равна 12π см,а образующая конуса-10 см. Чему ровна высота конуса?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Соколова Ксения.

l=12π

значит:  12π=2πR

R=6

берем высоту и радиус как катеты прямоугольного треугольника, а образующая будет являться гипотенузой.

 

по теореме пифагора:
L=8²+6²=√100=10 

Ответ: 10см 


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи воспользуемся формулой для длины окружности:

L = 2πr,

где L - длина окружности, r - радиус окружности.

Так как длина окружности основания конуса равна 12π см, то:

12π = 2πr.

Делим обе части уравнения на 2π:

6 = r.

Таким образом, радиус окружности основания конуса равен 6 см.

Теперь воспользуемся теоремой Пифагора для нахождения высоты конуса:

h^2 = l^2 - r^2,

где h - высота конуса, l - образующая конуса, r - радиус окружности основания конуса.

В нашем случае образующая конуса равна 10 см, а радиус равен 6 см:

h^2 = 10^2 - 6^2, h^2 = 100 - 36, h^2 = 64.

Извлекаем квадратный корень из обеих частей уравнения:

h = √64, h = 8.

Таким образом, высота конуса равна 8 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос