 
4x^+5y^-100=0 Найдите центральные координаты и радиус?
 0
        0
         0
        0
    Ответы на вопрос
 
         0
                    0
                     0
                    0
                 
            Finding the Central Coordinates and Radius
To find the central coordinates and radius of the given equation 4x^2 + 5y^2 - 100 = 0, we can first rewrite the equation in the standard form of a circle equation, which is given by:
x^2 + y^2 + 2gx + 2fy + c = 0
Where the center of the circle is given by (-g, -f) and the radius is given by sqrt(g^2 + f^2 - c).
Rewriting the Equation
By completing the square for both x and y, we can rewrite the equation in the standard form.
For x: 4x^2 - 100 = -5y^2 4x^2 = 5y^2 + 100 x^2 = (5y^2 + 100)/4
For y: 5y^2 + 100 = 4x^2 5y^2 = 4x^2 - 100 y^2 = (4x^2 - 100)/5
Identifying the Coefficients
Comparing the rewritten equations with the standard form, we can identify the coefficients: g = 0 f = 0 c = -100
Finding the Center and Radius
The center of the circle is given by (-g, -f), which in this case is (0, 0).
The radius of the circle is given by sqrt(g^2 + f^2 - c), which in this case is sqrt(0^2 + 0^2 - (-100)) = sqrt(100) = 10.
Therefore, the central coordinates of the circle are (0, 0) and the radius is 10.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			