
4x^+5y^-100=0 Найдите центральные координаты и радиус?


Ответы на вопрос




Finding the Central Coordinates and Radius
To find the central coordinates and radius of the given equation 4x^2 + 5y^2 - 100 = 0, we can first rewrite the equation in the standard form of a circle equation, which is given by:
x^2 + y^2 + 2gx + 2fy + c = 0
Where the center of the circle is given by (-g, -f) and the radius is given by sqrt(g^2 + f^2 - c).
Rewriting the Equation
By completing the square for both x and y, we can rewrite the equation in the standard form.
For x: 4x^2 - 100 = -5y^2 4x^2 = 5y^2 + 100 x^2 = (5y^2 + 100)/4
For y: 5y^2 + 100 = 4x^2 5y^2 = 4x^2 - 100 y^2 = (4x^2 - 100)/5
Identifying the Coefficients
Comparing the rewritten equations with the standard form, we can identify the coefficients: g = 0 f = 0 c = -100
Finding the Center and Radius
The center of the circle is given by (-g, -f), which in this case is (0, 0).
The radius of the circle is given by sqrt(g^2 + f^2 - c), which in this case is sqrt(0^2 + 0^2 - (-100)) = sqrt(100) = 10.
Therefore, the central coordinates of the circle are (0, 0) and the radius is 10.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili