Вопрос задан 28.04.2019 в 17:25. Предмет Геометрия. Спрашивает Смоляр Максим.

В трапеции АВСД, с основаниями BC и АД, точка М- точка пересечения диагоналей. Найдите АМ и МС,

если АД= 8 см, ВС= 6 см, АС= 35 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хамитова Аксая.
Треугольники  AMD   и  CMB  подобны 
AD/BC = AM/MC
AD/BC +1 = AM/MC +1
(AD+BC)/BC = (AM+MC)/MC
(AD+BC)/BC = AC/MC
MC =  AC*BC/(AD+BC)
MC=35*6/(6+8) =15  (см)
AM =AC- MC=35- 15=20 (см)
-----------------------------------------------------------------
Треугольники  AMD   и  CMB  подобны обозначаем AM = x , MC =AC-MC =35-x
AD/BC = AM/MC
8/6=x/(35-x)
4/3=x/(35-x) 
 4(35-x) = 3x
 7x=140
 x=20
















0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Task: Finding AM and MS in Trapezoid ABCD

To find the lengths of AM and MS in trapezoid ABCD, we can use the properties of trapezoids and the given information about the lengths of AD, BC, and AC.

Let's start by labeling the given information: - AD = 8 cm (length of one of the bases) - BC = 6 cm (length of the other base) - AC = 35 cm (length of the diagonal)

We are asked to find the lengths of AM and MS.

Solution:

To find AM and MS, we can use the following properties of trapezoids:

1. The diagonals of a trapezoid bisect each other. This means that the point of intersection of the diagonals, M, divides each diagonal into two equal parts.

2. The lengths of the diagonals can be found using the formula:

AC^2 = AM^2 + MC^2 (1)

BD^2 = BM^2 + MD^2 (2)

where AC and BD are the lengths of the diagonals, and AM, MC, BM, and MD are the lengths of the segments of the diagonals.

Let's use these properties to find the lengths of AM and MS.

Using equation (1), we can substitute the given values:

35^2 = AM^2 + MC^2 (3)

Since M is the point of intersection of the diagonals, it divides AC into two equal parts: AM and MC. Therefore, we can rewrite equation (3) as:

35^2 = AM^2 + AM^2

Simplifying the equation:

35^2 = 2AM^2

Now, we can solve for AM:

AM^2 = (35^2) / 2

AM = sqrt((35^2) / 2)

Using a calculator, we can find that AM is approximately 17.6777 cm.

Since M divides the diagonal AC into two equal parts, we can conclude that MC is also approximately 17.6777 cm.

Now, let's find the length of MS.

Using equation (2), we can substitute the given values:

BD^2 = BM^2 + MD^2 (4)

Since M is the point of intersection of the diagonals, it divides BD into two equal parts: BM and MD. Therefore, we can rewrite equation (4) as:

BD^2 = BM^2 + BM^2

Simplifying the equation:

BD^2 = 2BM^2

Since BD is the difference between the lengths of the bases, we can substitute the given values:

BD = AD - BC

BD = 8 cm - 6 cm

BD = 2 cm

Now, we can solve for BM:

BM^2 = (BD^2) / 2

BM = sqrt((BD^2) / 2)

Using a calculator, we can find that BM is approximately 1.4142 cm.

Since M divides the diagonal BD into two equal parts, we can conclude that MD is also approximately 1.4142 cm.

Finally, we can find the length of MS by subtracting MD from MC:

MS = MC - MD

MS = 17.6777 cm - 1.4142 cm

MS ≈ 16.2635 cm

Therefore, the lengths of AM and MS in trapezoid ABCD are approximately:

AM ≈ 17.6777 cm and MS ≈ 16.2635 cm.

Please note that the values are approximate due to rounding.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос