
Найдите высоту правильной треугольной пирамиды, у которой боковая поверхность = 60√3 см², а полная
поверхность = 108 √3см².

Ответы на вопрос

Найдём площадь основания Sосн.=Sполная- S поверхности=48корней из 3. Площадь основания правильного треугольника может быть найдена по формуле Sосн.=(корень из3 )/4 умноженное на а квадрат, где а сторона треугольника. Получаем 48 корней из 3=( а квадрат*корень из 3)/4=8корней из3. Площадь одной боковой грани найдем разделив( 60 кор. из 3) на три (по числу граней). Получим S1=20корней из 3. Площадь боковой грани также равна половине произведения основания на апофему= (h*а)/2=(h *8 корней из 3)/2. Приравниваем два выражения и получаем 20корней из3=h* 4 корня из 3. Отсюда h=5.Высота пирамиды приходит в центр вписанной окружности радиусом r=а/2 корня из 3. Подставим а и получим r=(8 кор. из3)/ (2 кор. из 3) =4. Тогда по теореме Пифагора из треугольника образованного апофемой и радиусом вписанной окружности, находим высоту пирамиды H=корень из(hквадрат-r квадрат)=корень из(25-16)=3.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili