
Вопрос задан 01.05.2018 в 17:34.
Предмет Геометрия.
Спрашивает Шнейдер Дарья.
Чему равен радиус окружности, вписанной в правильный шестиугольник, меньшая диагональ которого
равна 12 см?

Ответы на вопрос

Отвечает Костко Даниил.
Угол правильного шестиугольника:
180°(n - 2) / n = 180°(6 - 2)/6 = 120°
∠BAF = 120°
ΔBAF равнобедренный (АВ = AF), тогда
∠ABF = ∠AFB = (180° - 120°)/2 = 30°
∠CBF = 120° - 30° = 90°
∠EFB = 120° - 30° = 90°.
Так как BF перпендикулярен противолежащим сторонам шестиугольника, BF равен диаметру вписанной окружности.
Радиус вписанной окружности:
r = BF/2 = 12/2 = 6 см



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili