Вопрос задан 26.02.2019 в 15:27. Предмет Геометрия. Спрашивает Биккулов Тимур.

Какому промежутку принадлежит значение выражения если 3<x<8; 2<x<7

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вернер Машуля.
1.подставим в выражение 7 \frac{x}{y} +2 значение x=3 и значение у=2 =>
7 \frac{3}{2}+2 =10,5 Это первая граница промежутка.
2. подставим в выражение 7 \frac{x}{y} +2 значение x=8 и значение у=7 =>
7 \frac{8}{7} +2=10 \frac{1}{7} Это вторая граница промежутка.
Получаем промежуток 7 \frac{x}{y} +2 ∈(10 \frac{1}{7} ; 10,5 ) Скобки круглые т.к знак неравенства строгий.
Возможна другая фурмолировка ответа 10 \frac{1}{7} < 7 \frac{x}{y} +2 > 10,5
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Дано два неравенства: 3 < x < 8 и 2 < x < 7. Мы хотим найти промежуток, в котором оба неравенства одновременно выполняются.

Для начала, посмотрим на первое неравенство 3 < x < 8. Оно означает, что x находится между 3 и 8, не включая сами эти числа. То есть, x может быть любым числом больше 3 и меньше 8.

Теперь посмотрим на второе неравенство 2 < x < 7. Оно означает, что x находится между 2 и 7, не включая сами эти числа. То есть, x может быть любым числом больше 2 и меньше 7.

Чтобы найти промежуток, в котором оба неравенства выполняются, нам нужно найти пересечение этих двух промежутков.

Минимальное значение x в первом неравенстве равно 3, а во втором неравенстве - 2. Максимальное значение x в первом неравенстве равно 8, а во втором неравенстве - 7.

Таким образом, пересечение промежутков будет состоять из чисел, которые больше 3 и больше 2, а также меньше 8 и меньше 7.

Минимальное значение x в пересечении будет максимальным из двух минимальных значений, то есть 3. Максимальное значение x в пересечении будет минимальным из двух максимальных значений, то есть 7.

Итак, значение выражения будет принадлежать промежутку от 3 до 7, не включая сами эти числа: 3 < x < 7.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос