Вопрос задан 20.01.2019 в 17:56. Предмет Геометрия. Спрашивает Саваровский Илья.

Две окружности касаются внутренним образом в точке M. Пусть AB — хорда большей окружности,

касающаяся меньшей окружности в точке T. Известно, что AT=7, BT=4. Найдите отношение AM/BM
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кучеров Дмитрий.
Пусть KO - диаметр большей окружности, перпендикулярный AB. Точка K лежит на большей окружности.
Ясно, что KO II O1T; так как O1T тоже перпендикулярно AB.
Пусть прямая MT пересекает прямую KO в точке K1.
На чертеже эти точки K и K1 изображены, как одна - но именно это и есть предмет доказательства. Я буду доказывать, что точки K и K1 совпадают.
На самом деле все уже очевидно - треугольники OK1M и O1TM подобны, а треугольник O1TM очевидно равнобедренный :). Поэтому OK1 = OM = OK, и точки K и K1 совпадают.
Это означает, что прямая MT, будучи продолжена за точку T, делит дугу AKB пополам (я напомню, что KO - диаметр, перпендикулярный хорде AB, поэтому точка K делит дугу AKB пополам. ).
Углы AMK и BMK - вписанные и опираются на равные дуги, поэтому они равны. Следовательно MT - биссектриса угла AMB;
AM/MB = AT/BT = 7/4;
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос