Вопрос задан 22.08.2018 в 00:04. Предмет Геометрия. Спрашивает Бабкин Николай.

5) найти объем шарового сектора, если радиус окружности его основания равен 60 см, а радиус шара 75

см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Даровских Аня.
Шаровой сектор - это конус и шаровой сегмент.
Радиус конуса r, его высота H и радиус шара R образуют прямоугольный треугольник. Высота конуса из т. Пифагора
H^2 = R^2 - r^2 = 75^2 - 60^2 = 5625 - 3600 = 2025 = 45^2
H = 45
Объем конуса
V(кон) = 1/3*pi*r^2*H = 1/3*pi*60^2*45 = 3600*15*pi = 54000pi.
Радиус шарового сегмента r = 60, а его высота h = R - H = 75 - 45 = 30.
V(шс) = pi*h^2*(R - h/3) = pi*30^2*(75 - 30/3) = pi*900*65 = 58500pi.
Объем шарового сектора равен сумме этих объемов.
V = V(кон) + V(шс) = 54000pi + 58500pi = 112500pi
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Объем шарового сектора можно найти по формуле:

V = (2/3)πr^3

где V - объем шарового сектора, r - радиус шара.

В данном случае, радиус шара равен 75 см, поэтому подставляем значение в формулу:

V = (2/3)π(75)^3 V = (2/3)π(421875) V ≈ 879645.94 см³

Таким образом, объем шарового сектора равен примерно 879645.94 см³.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос