
На расстоянии 8 см от центра шара проведено сечение, длина окружности которого равна 12π см.
Найдите площадь его поверхности ПОМОГИТЕ ПОЖАЛУЙСТА, НУЖНО С РИСУНКОМ

Ответы на вопрос





Task: Finding the Surface Area of a Sphere
To find the surface area of a sphere, we need to know the radius of the sphere. However, in the given question, we are provided with the length of a circumference that is formed by a section of the sphere, which is 12π cm. We are also given that the section is made at a distance of 8 cm from the center of the sphere.
To solve this problem, we can use the relationship between the circumference of a circle and its radius. The formula for the circumference of a circle is given by:
C = 2πr
where C is the circumference and r is the radius of the circle.
In this case, we are given the length of the circumference, which is 12π cm. We can set up an equation using this information:
12π = 2πr
To find the radius, we can solve this equation for r:
r = (12π) / (2π) = 6 cm
Now that we have the radius of the sphere, we can calculate its surface area using the formula:
Surface Area = 4πr^2
Substituting the value of r, we get:
Surface Area = 4π(6^2) = 4π(36) = 144π cm^2
Therefore, the surface area of the sphere is 144π cm^2.
Please note that the above solution assumes that the section made at a distance of 8 cm from the center of the sphere is a circular section. If the section is a different shape, the calculation may vary.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili