
РЕШИТЬ ДВІ ЗАДАЧІ!!! БУДЬЛАСКА С МАЛЮНКОМ!!1. Периметр квадрата дорівнює 224 дм. Знайти сторону
квадрата. 2. Точка перетину діагоналей квадрата віддалена від його сторони на 3см. Знайдіть периметр квадрата.

Ответы на вопрос

Объяснение:
1.
Р=224 дм
сторона а=Р/4=224/4=56 дм
2.
сторона а=2•3=6 см
Р=4•а=4•6=24 см




Problem 1: Finding the side length of a square with a given perimeter
To find the side length of a square, we can use the formula for the perimeter of a square, which is equal to four times the length of one side.
Given that the perimeter of the square is 224 dm, we can set up the following equation:
Perimeter = 4 * Side Length
Substituting the given value, we have:
224 = 4 * Side Length
To find the side length, we can divide both sides of the equation by 4:
Side Length = 224 / 4
Simplifying the equation, we get:
Side Length = 56 dm
Therefore, the side length of the square is 56 dm.
Problem 2: Finding the perimeter of a square with a given distance from a diagonal to one of its sides
To find the perimeter of a square, we need to know the length of one side. However, in this problem, we are given the distance from a diagonal to one of the sides.
Let's assume that the distance from the diagonal to one of the sides is x cm. Since the diagonal of a square divides it into two congruent right triangles, we can use the Pythagorean theorem to find the relationship between the side length and the distance from the diagonal to one of the sides.
According to the Pythagorean theorem, the sum of the squares of the two legs of a right triangle is equal to the square of the hypotenuse. In this case, the hypotenuse is the diagonal of the square, and the legs are the distance from the diagonal to one of the sides (x cm) and half of the side length (s/2 cm).
Using the Pythagorean theorem, we have:
x^2 + (s/2)^2 = s^2
Simplifying the equation, we get:
x^2 + s^2/4 = s^2
Multiplying both sides of the equation by 4 to eliminate the fraction, we have:
4x^2 + s^2 = 4s^2
Rearranging the equation, we get:
3s^2 - 4x^2 = 0
Now, we can solve this quadratic equation to find the relationship between the side length (s) and the distance from the diagonal to one of the sides (x).
To solve the quadratic equation, we can factor it as follows:
(√3s - 2x)(√3s + 2x) = 0
This equation will be satisfied if either (√3s - 2x) = 0 or (√3s + 2x) = 0.
If (√3s - 2x) = 0, then √3s = 2x, and if (√3s + 2x) = 0, then √3s = -2x. Since the side length cannot be negative, we can ignore the second case.
Solving (√3s - 2x) = 0 for s, we have:
√3s = 2x
Dividing both sides of the equation by √3, we get:
s = (2x) / √3
Now, we can find the perimeter of the square using the side length (s).
The perimeter of a square is given by the formula:
Perimeter = 4 * Side Length
Substituting the value of s, we have:
Perimeter = 4 * ((2x) / √3)
Simplifying the equation, we get:
Perimeter = (8x) / √3
Therefore, the perimeter of the square is (8x) / √3 cm.
Please note that the value of x was not provided in the question, so we cannot calculate the exact perimeter without knowing the value of x.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili