Вопрос задан 18.10.2023 в 02:44. Предмет Геометрия. Спрашивает Касьянова Катя.

бічна поверхня правильної трикутної призми дорівнює 12√3 см2, а повна поверхня- 20√3 см2. Знайти

висоту призми
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Llorens Natasha.

Відповідь:

√3 см

Пояснення:

розв'язання завдання додаю


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження висоти правильної трикутної призми можемо використовувати інформацію про її бічну поверхню і повну поверхню.

Бічна поверхня трикутної призми може бути знайдена за допомогою формули:

Бічна поверхня = (периметр основи) * (висота) / 2

Повна поверхня трикутної призми складається з бічної поверхні та двох основ, тобто:

Повна поверхня = Бічна поверхня + 2 * (площа основи)

Ми знаємо, що бічна поверхня дорівнює 12√3 см², а повна поверхня - 20√3 см².

Отже, ми можемо записати наступні рівняння:

12√3 = (периметр основи) * (висота) / 2 20√3 = 12√3 + 2 * (площа основи)

Давайте розв'яжемо перше рівняння для висоти:

12√3 = (периметр основи) * (висота) / 2

Розмножимо обидві сторони на 2, щоб позбутися ділення на 2:

24√3 = (периметр основи) * (висота)

Тепер давайте розв'яжемо друге рівняння для периметра основи:

20√3 = 12√3 + 2 * (площа основи)

Віднімемо 12√3 з обох сторін:

8√3 = 2 * (площа основи)

Поділимо обидві сторони на 2:

4√3 = площа основи

Тепер, ми знаємо площу основи, і ми можемо знайти периметр основи, використовуючи формулу для площі трикутника:

Площа трикутника = (1/2) * (сторона основи) * (висота трикутника)

Площа основи = 4√3, і трикутник є рівностороннім, тому всі сторони однакові. Позначимо сторону як "s".

4√3 = (1/2) * s * (висота трикутника)

Ми вже знайшли площу основи (4√3), та площу трикутника можна знайти з формули площі рівностороннього трикутника:

Площа трикутника = (sqrt(3)/4) * (сторона основи)^2

Площа трикутника = (sqrt(3)/4) * s^2

Таким чином, ми маємо:

(sqrt(3)/4) * s^2 = 4√3

Тепер розв'яжемо це рівняння для s:

s^2 = (4√3) * (4/√3)

s^2 = 4 * 4 = 16

s = √16 = 4

Тепер, коли ми знаємо довжину сторони основи (s), ми можемо знайти периметр основи:

Периметр основи = 3 * s (так як це рівносторонній трикутник)

Периметр основи = 3 * 4 = 12

Тепер, ми можемо повернутися до першого рівняння і знайти висоту:

24√3 = (периметр основи) * (висота)

24√3 = 12 * (висота)

Висота = (24√3) / 12 = 2√3 см

Отже, висота призми дорівнює 2√3 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос