Вопрос задан 05.10.2023 в 22:26. Предмет Геометрия. Спрашивает Гафаров Салават.

У трикутнику АВС кут С=33° кут А= 84° знайдіть найбільшу сторону цього трикутника

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пичугина Дарья.

Ответ: BC

Объяснение:

Напротив большего угла лежит большая сторона.

Найдём ∠B = 180° - ∠A - ∠C = 180° - 84° - 33° = 63° (теор. о сумме углов Δ)

То есть, наибольшая сторона в ΔABC лежит напротив угла A, а именно BC.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб знайти найбільшу сторону трикутника ABC, можна скористатися законом синусів. Згідно з цим законом:

asinA=bsinB=csinC\frac{a}{\sin{A}} = \frac{b}{\sin{B}} = \frac{c}{\sin{C}},

де aa, bb, і cc - сторони трикутника ABC, AA, BB, і CC - відповідні кути.

У нашому випадку:

A=84A = 84^\circ, C=33C = 33^\circ.

Ми шукаємо найбільшу сторону, тобто cc.

Так як AA і CC вже відомі, нам потрібно знайти BB:

B=180ACB = 180^\circ - A - C, B=1808433B = 180^\circ - 84^\circ - 33^\circ, B=180117B = 180^\circ - 117^\circ, B=63B = 63^\circ.

Тепер ми можемо скористатися законом синусів для знаходження сторони cc:

asinA=csinC\frac{a}{\sin{A}} = \frac{c}{\sin{C}}.

Ми знаємо AA, CC і sinC\sin{C}, тому ми можемо вирішити для cc:

asin84=csin33\frac{a}{\sin{84^\circ}} = \frac{c}{\sin{33^\circ}}.

Тепер ми знаємо, що sin840.9848\sin{84^\circ} \approx 0.9848 і sin330.5446\sin{33^\circ} \approx 0.5446, отже:

a0.9848=c0.5446\frac{a}{0.9848} = \frac{c}{0.5446}.

Тепер ми можемо вирішити для cc:

c=a0.54460.9848c = \frac{a \cdot 0.5446}{0.9848}.

Якщо вам відома довжина сторони aa, ви можете підставити це значення і розрахувати сторону cc.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос