
Суретте AB ∥ DC, FE ∥ BC. ∠ABC = 15x + 1°, ∠CFK = 12x – 8° ал FK – EFC бұрышының биссектрисасы. DFE
бұрышы неше градусқа тең?

Ответы на вопрос

Ответ:
76°
Объяснение:
∠FCK = ∠ABC = 15x + 1° как соответственные при пересечении AB║DC секущей ВК.
∠EFC = 2 · ∠CFK = 2(12x - 8°), так как FK - биссектриса угла EFC.
∠FCK + ∠EFC = 180°, так как эти углы - внутренние односторонние при пересечении FE║BC секущей DC.
15x + 1° + 2(12x - 8°) = 180°
15x + 1° + 24x - 16° = 180°
39x = 195°
x = 5
∠FCK = 15 · 5 + 1° = 76°
∠DEF = ∠FCK = 76° как соответственные при пересечении FE║BC секущей DC.




Сіздің сұрауыңызда "AB ∥ DC" және "FE ∥ BC" деп айтуылған. Сондықтан, бізде барлық үйлесімді өлшемдерді жасау үшін параллельдік негізі берілген.
Әрекеттің бірінші қадамы - өлшемдерді табу:
Алдыңғы теоремалар қолданылады. Бізге "Алтернатив биріктіретін үшбұрыш" теоремасы керек болады. Оны қолдануды қажет емес, бірақ аяқтау үшін қолдау жасаңыз.
Алтернатив биріктіретін үшбұрыш теоремасы бойынша, "AB ∥ DC" және "FE ∥ BC" болған салыстырмалы үшбұрыштардың басындағы уголдар тең болуы керек. Сондықтан, ∠ABC = ∠DCF.
Сонымен қатар, "FK – EFC бұрышының биссектрисасы" деген мәлімет бізге ∠CFK = ∠KFE болатынды айтуады.
Сондықтан, әрекеттің екінші қадамы - уголдарды таптыңыз:
- ∠ABC = 15x + 1°
- ∠CFK = 12x – 8°
Әрекеттің аяқтауы үшін, ∠ABC = ∠DCF емес пе деп тексеріміз. Ол емес, өйткені, "FE ∥ BC" болып табылады.
Дерек куттар өлшемдерін таптыңыз:
∠DCF = 180° - ∠ABC = 180° - (15x + 1°) = 179° - 15x
Сонымен қатар, ∠CFK = ∠KFE емес дегенді тексерейік:
12x - 8° = ∠CFK = ∠KFE
Әрекеттің соңғы қадамы - DFE бұрышының өлшемін таптыңыз:
DFE бұрышының өлшемі = ∠DCF + ∠CFK + ∠KFE
DFE бұрышының өлшемі = (179° - 15x) + (12x - 8°) + (12x - 8°)
DFE бұрышының өлшемі = 179° - 15x + 12x - 8° + 12x - 8°
DFE бұрышының өлшемі = 179° - 8° - 8° + 12x - 15x + 12x
DFE бұрышының өлшемі = 163° - 11x
Сондықтан, DFE бұрышының өлшемі 163° - 11x градусқа тең.



Сіздің сұрауыңызда бір діаграмма жасау қажет болады, сондықтан мен сізге оны жасау мүмкіндігі жоқ. Мен сізге мағлұмат беру мүмкін: AB ∥ DC болса, онда FE ∥ BC дегеніне сенімдіміз.
Сонымен қатар, алдын ала айтылған мәліметтер бойынша:
∠ABC = 15x + 1° ∠CFK = 12x – 8°
ФК – EFC бұрышының биссектрисасы болуы себебі, EFC бұрышының мәндері сауатты жалпыга бөлінеді:
∠EFC = (1/2)(∠CFK)
Осылайша, ∠EFC = (1/2)(12x – 8°) = 6x – 4°
DFE бұрышының қатар мағынасы бір барлығы бойынша 180° болады. Сондықтан:
∠DFE = 180° - ∠EFC - ∠CFK ∠DFE = 180° - (6x - 4°) - (12x - 8°)
Осыдан соң, ∠DFE мәнін тапу үшін тараптардың мәндерін қосып, 180°-тен аяқтауымыз керек:
∠DFE = 180° - 6x + 4° - 12x + 8° ∠DFE = 180° - 18x + 12° ∠DFE = 192° - 18x
Сонымен қатар, DFE бұрышының мәні 192° - 18x градус болады.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili