Вопрос задан 27.09.2023 в 09:02. Предмет Геометрия. Спрашивает Фролова Настя.

Дано: АВ=АС, угол В=50° Найти угол С

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Litvintchik Ivan.

Ответ:

65°

Объяснение:

Если две стороны равны, значит это равнобедреный треугольник, значит два угла тоже равны. Так как сума углов треугольника 180°, нам известен один угол 50° поэтому таркой ответ

 \frac{180 - 50}{2}  = 65

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Если дано, что отрезки AB и AC равны, и угол B равен 50°, то мы можем использовать закон синусов, чтобы найти угол C. Закон синусов гласит:

asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

Где:

  • a, b, c - длины сторон треугольника,
  • A, B, C - соответствующие углы напротив соответствующих сторон.

В данном случае у нас есть два равных отрезка AB и AC, поэтому a = AC и b = AB.

Так как AB = AC и угол B = 50°, мы можем записать:

ABsinA=ACsinB\frac{AB}{\sin A} = \frac{AC}{\sin B}

Так как AB = AC и B = 50°, мы можем упростить это уравнение:

ABsinA=ABsin50°\frac{AB}{\sin A} = \frac{AB}{\sin 50°}

Теперь мы можем выразить угол A:

sinA=ABABsin50°\sin A = \frac{AB}{AB} \cdot \sin 50°

sinA=sin50°\sin A = \sin 50°

Теперь, чтобы найти угол C, мы можем использовать то, что сумма углов треугольника равна 180°:

A+B+C=180°A + B + C = 180°

Подставим известные значения:

A+50°+C=180°A + 50° + C = 180°

Теперь найдем угол C:

C=180°A50°C = 180° - A - 50°

C=180°sin1(sin50°)50°C = 180° - \sin^{-1}(\sin 50°) - 50°

C80°C \approx 80°

Итак, угол C примерно равен 80°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос