Вопрос задан 25.09.2023 в 04:20. Предмет Геометрия. Спрашивает Безрукова Ирина.

42б.Дві сторони трикутника дорівнюють 7 см і 15 см, а кут між ними—600.Знайдіть третю сторону

трикутника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кулеш Вероника.
Для знаходження третьої сторони трикутника ми можемо скористатися косинусним законом:

c^2 = a^2 + b^2 - 2ab*cos(C),

де c - третя сторона трикутника, a та b - інші дві сторони, а C - кут між a та b.

Підставимо в формулу відповідні значення:

c^2 = 7^2 + 15^2 - 2715*cos(60°)
c^2 = 49 + 225 - 210
c^2 = 64
c = √64
c = 8

Отже, третя сторона трикутника дорівнює 8 см. Відповідь: 8 см.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вирішення цієї задачі, використаємо закон косинусів, який стверджує, що для будь-якого трикутника з сторонами a, b і c та кутом між сторонами a і b (C), справедлива наступна формула:

c² = a² + b² - 2ab*cos(C)

У нашому випадку, a = 7 см, b = 15 см та C = 60 градусів. Переведемо кут у радіани:

C = 60° * (π/180) ≈ 1.047 радіан.

Тепер можна підставити значення до формули:

c² = 7² + 15² - 2 * 7 * 15 * cos(1.047)

c² ≈ 49 + 225 - 210 * cos(1.047)

c² ≈ 274 - 210 * 0.5

c² ≈ 274 - 105

c² ≈ 169

Отже, c ≈ √169 ≈ 13 см.

Третя сторона трикутника дорівнює приблизно 13 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос