Вопрос задан 07.09.2023 в 04:39. Предмет Геометрия. Спрашивает Кочарин Максим.

В равнобедренном треугольнике АВС с основанием ВС проведена медиана АМ. найдите медиану АМ если

периметр треугольника АВС равен 32 см, а периметр треугольника АВМ равен 24 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алимов Елхан.
Треугольник ABM и AMC два треугольника в составе треугольника ABC. Значит там две медианы AM. ABM+AMC=48см
48см-32см=16см:2=8см- длина AM
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим длину стороны треугольника АВС как a и длину медианы АМ как m.

Периметр треугольника АВС равен 32 см, и так как он равнобедренный, то a + a + BC = 32, где BC - длина основания ВС.

Из этого уравнения мы можем найти значение a:

2a + BC = 32.

Теперь у нас есть вторая информация: периметр треугольника АВМ равен 24 см. Так как медиана АМ делит треугольник АВС на два равных треугольника, периметр треугольника АВМ можно записать как:

2a + 2m = 24.

Теперь у нас есть система из двух уравнений:

  1. 2a + BC = 32,
  2. 2a + 2m = 24.

Мы можем решить эту систему уравнений. Выразим a из первого уравнения:

2a = 32 - BC.

Теперь подставим это значение a во второе уравнение:

32 - BC + 2m = 24.

Теперь выразим m:

2m = 24 - 32 + BC, 2m = -8 + BC, m = (BC - 8) / 2.

Теперь нам нужно найти значение BC. Мы можем воспользоваться тем фактом, что медиана в равнобедренном треугольнике делит основание ВС пополам. Таким образом, BC = a / 2.

Теперь подставим это значение BC обратно в уравнение для m:

m = ((a / 2) - 8) / 2, m = (a / 4) - 4.

Теперь мы можем найти значение медианы АМ, если знаем значение a. Давайте вернемся к первому уравнению:

2a + BC = 32.

Подставим значение BC = a / 2:

2a + (a / 2) = 32, 4a + a = 64, 5a = 64, a = 64 / 5, a = 12.8.

Теперь, когда мы знаем значение a, можем найти значение медианы АМ:

m = (a / 4) - 4, m = (12.8 / 4) - 4, m = 3.2 - 4, m = -0.8.

Итак, медиана АМ равна -0.8 см. Однако это значение не имеет смысла в контексте геометрии, так как медиана не может иметь отрицательную длину. Возможно, в задаче допущена ошибка, или у нас есть недостаточно информации для ее решения.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос