
Вопрос задан 20.07.2018 в 15:39.
Предмет Геометрия.
Спрашивает Мустафаев Марлен.
Найдите площадь прямоугольного треугольника, если радиус вписанной в него окружности r=2 см, а
радиус описанной окружности R=5 см

Ответы на вопрос

Отвечает Соколова Наталья.
Дано: прямоугольный ∆, a,b-катеты, c- гипотенуза; r=2 см; R=5 см.
Найти: S∆
S∆=½ab
R=c/2 => c=2R
c=2*5=10 см.
r=½(a+b-c)
a+b-c=2r
a+b=2r+c
a+b=2*2+10=14 см
Выразим отсюда катет а
а=14-b
По т. Пифагора
с²=а²+b²
(14-b)²+b²=с²
196-28b+b²+b²=10²
2b²-28b+96=0 |:2
b²-14b+48=0
b1=6 b2=8
Найдем длину катета
а1=14-6=8 см
а2=14-8=6 см
Т.е. один из катетов равен 6 см, другой - 8 см.
S=½•6•8=24 см²


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili