
В треугольнике ABC угол C равен 90° , M – середина стороны AB. Известно, что AC = 6 , BC = 2 корня
из 7. Найдите СМ. Помогите!

Ответы на вопрос

Ответ:
CM=4 ед.
Объяснение:
ΔABC - прямоугольный, так как ∠C=90°.
Воспользуемся теоремой Пифагора : в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
AB= 8 ед.
Так как точка M- середина , то CM- медиана прямоугольного треугольника, проведенная к гипотенузе.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.
Значит
CM=4 ед.




Для решения данной задачи воспользуемся свойствами прямоугольного треугольника и серединного перпендикуляра.
Мы знаем, что угол C равен 90°, следовательно, треугольник ABC является прямоугольным. Также, нам дано, что AC = 6 и BC = 2√7.
Согласно теореме Пифагора для прямоугольного треугольника, сумма квадратов катетов равна квадрату гипотенузы. Таким образом, имеем:
AC^2 + BC^2 = AB^2
Подставляя известные значения:
6^2 + (2√7)^2 = AB^2 36 + 4 * 7 = AB^2 36 + 28 = AB^2 64 = AB^2
AB = √64 AB = 8
Теперь нам нужно найти длину СМ (где M - середина стороны AB). Поскольку M является серединой, то AM = BM = AB/2 = 8/2 = 4.
Таким образом, СМ = AM = 4.
Ответ: СМ = 4.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili