Вопрос задан 19.07.2023 в 07:57. Предмет Геометрия. Спрашивает Кудра Роман.

Найдите ПЕРИМЕТР и ПЛОЩАДЬ прямоугольника, если его диагональ равна 20 см, а меньшая сторона 12 см.

Дайте пожалуйста полный и развернутый ответ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лысенко Елизавета.

Ответ:

периметр 56 см

площадь 192 см²

Объяснение:

Рисуем прямоугольник.

По теореме Пифагора можем найти AD:

AC²=AD²+CD²

AD²=AC²-CD²

AD²=20²-12²

AD²=400-144

AD²=256

AD=√256

AD=16

Сторона AD=16 см

CD=12 см

Периметр =(16+12)*2=56 см

Площадь = 16*12= 192 см²

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти периметр и площадь прямоугольника, имея информацию о его диагонали и одной стороне, нам необходимо определить значения других сторон.

Пусть меньшая сторона прямоугольника равна a, а большая сторона равна b. Известно, что диагональ равна 20 см.

Мы можем использовать теорему Пифагора для нахождения второй стороны прямоугольника, так как диагональ, меньшая сторона и большая сторона образуют прямоугольный треугольник.

Согласно теореме Пифагора, сумма квадратов катетов (двух меньших сторон) равна квадрату гипотенузы (диагонали). Мы можем записать это следующим образом:

a^2 + b^2 = 20^2

Мы также знаем, что меньшая сторона равна 12 см:

a = 12

Теперь мы можем использовать эти уравнения, чтобы найти значение b:

12^2 + b^2 = 20^2

144 + b^2 = 400

b^2 = 400 - 144

b^2 = 256

b = √256

b = 16

Таким образом, большая сторона прямоугольника равна 16 см.

Теперь мы можем найти периметр и площадь прямоугольника.

Периметр прямоугольника равен сумме всех его сторон:

Периметр = 2a + 2b

Периметр = 2(12) + 2(16)

Периметр = 24 + 32

Периметр = 56 см

Площадь прямоугольника равна произведению его сторон:

Площадь = a * b

Площадь = 12 * 16

Площадь = 192 см²

Итак, периметр прямоугольника составляет 56 см, а площадь - 192 см².

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос