Вопрос задан 19.07.2023 в 06:23. Предмет Геометрия. Спрашивает Кожевникова Дарья.

Чому дорівнює абсциса вершини пораболи y=-2x²+12х

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Коновалов Андрей.
Решение приложено к снимку:

0 0
Отвечает Майоров Вадим.

Ответ:

3.

Объяснение:

y=-2x²+12х - квадратичная графиком является парабола.

1 способ:

Х вершины = -b/(2a) = -12/(2•(-2)) = 3;

2 способ:

Найдём нули функции.

-2x²+12х = 0

-2х•(x-6) = 0

х = 0 или х = 6

Абсциссу вершины находим как среднее арифметическое нулей (нули функции симметричны относительно оси симметрии параболы):

Х вершины = (0 + 6):2 = 3.

Существуют и другие способы выполнения задания.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для визначення абсциси вершини параболи y = -2x² + 12x, можна скористатися формулою x = -b / (2a), де a та b є коефіцієнтами параболи у канонічному вигляді (y = ax² + bx + c). У цьому випадку, a = -2, b = 12.

Замінюючи значення a та b у формулу, отримуємо: x = -12 / (2 * -2) = -12 / -4 = 3.

Таким чином, абсциса вершини параболи y = -2x² + 12x дорівнює 3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос