
Вопрос задан 09.07.2023 в 17:41.
Предмет Геометрия.
Спрашивает Габбасов Владик.
Из точки В — вершины прямоугольника АВСD восстановлен перпендикуляр ВМ к плоскости прямоугольника.
Найдите МD, если CD=8, МС=15

Ответы на вопрос

Отвечает Тихий Ваня.
Ответ: 17
Объяснение:
MB-перпендикуляр(угол B=90),MC- так же будет перпендикуляром(угол C=90).За теоремой Пифагора найдем MD
MD^2=225+64=289
MD=17



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти длину отрезка MD, давайте воспользуемся геометрическими свойствами прямоугольника.
Поскольку AM перпендикулярен плоскости прямоугольника ABCD, то он будет пересекать эту плоскость в его центре (посередине между AB и CD). Таким образом, точка M будет серединой отрезка CD.
Поскольку MD — это половина от CD (по определению середины), то MD = CD / 2.
Известно, что CD = 8, поэтому MD = 8 / 2 = 4.
Итак, длина отрезка MD равна 4.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili