Вопрос задан 06.07.2023 в 08:36. Предмет Геометрия. Спрашивает Лебедева Анастасия.

Точка О центр окружности,CA касательная к окружности,AB-хорда окружности.Угол BAC равен 20° найти

угол ВАО
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Анашкин Руслан.

Ответ:

70°

Объяснение:

По свойству касательной к окружности, радиус OA образует с CA прямой угол, т.е. <OAC = 90°.

Но <OAC = <BAC + <BAO, => <BAO = <OAC  - <BAC = 90° - 20° = 70°

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, давайте разберемся с геометрическими свойствами данной ситуации.

  1. Так как точка О - центр окружности, то линия OA является радиусом окружности и перпендикулярна к касательной CA в точке A.

  2. Угол BAC равен 20°, и поскольку AB - хорда, то угол BOC, опирающийся на эту хорду, будет вдвое больше: 2 * 20° = 40°.

  3. Так как угол в центре (BOC) вдвое больше угла на окружности (BAC), то угол BOC равен 2 * угол ВАО.

Итак, у нас есть:

Угол BOC = 40°, Угол ВАО = (1/2) * угол BOC = (1/2) * 40° = 20°.

Таким образом, угол ВАО равен 20°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос