Вопрос задан 06.07.2023 в 01:15. Предмет Геометрия. Спрашивает Фролов Никита.

4. При якому значенні m вектори a(m; 5) і b (8; -20) а) колінеарні; б) перпендикулярні

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецова Лиля.

Ответ:

а) колінеарні

Объяснение:

отак повинно бути

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

a(m; 5) and b(8; -20) are collinear when their direction vectors are parallel, which means the ratio of their corresponding components is constant.

To check for collinearity, we can compare the ratios of the corresponding components of the vectors:

a(m; 5) = (m; 5) b(8; -20) = (8; -20)

The ratio of the corresponding x-components is:

m/8

The ratio of the corresponding y-components is:

5/(-20) = -1/4

If the two vectors are collinear, these ratios should be equal. Therefore, we can set up an equation:

m/8 = -1/4

To find the value of m, we can cross-multiply and solve for m:

4m = -8 m = -8/4 m = -2

Thus, when m = -2, the vectors a(-2; 5) and b(8; -20) are collinear.

To determine when the two vectors are perpendicular, we can use the dot product. Two vectors are perpendicular if and only if their dot product is zero.

The dot product of a(m; 5) and b(8; -20) is:

(m * 8) + (5 * -20) = 8m - 100

To find the value of m for which the vectors are perpendicular, we can set the dot product equal to zero and solve for m:

8m - 100 = 0 8m = 100 m = 100/8 m = 12.5

Therefore, when m = 12.5, the vectors a(12.5; 5) and b(8; -20) are perpendicular.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос