
Вопрос задан 01.07.2023 в 21:22.
Предмет Геометрия.
Спрашивает Семенов Макс.
5. На прямой отложены два равных отрезка АС и СВ. На отрезке CB взята точка D, которая делит его
в отношении 6:5, считая от точки C. Найдите расстояние между А иB, если CD=12 см.[5 помогите у нас соч!!! 

Ответы на вопрос

Отвечает Андреев Лёша.
Ответ:
АВ=44см
Объяснение:
12÷6=2
2×5=10
12+10=22 СВ
АС=СВ
22+22=44



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Дано: AC = CV CD = 12 см
Так как отношение, в котором точка D делит отрезок CB, равно 6:5, мы можем представить отрезок CB в виде 11 равных частей. Значит, каждая часть будет равна 12 см / 11 = 1.09 см.
Теперь мы можем найти длину отрезка AB. Он состоит из двух частей: AC и CV. Поскольку AC = CV, суммарная длина AB будет равна двум длинам этих отрезков.
AC = CV = 5 * 1.09 см = 5.45 см
Таким образом, расстояние между точками A и B будет равно:
AB = AC + CV = 5.45 см + 5.45 см = 10.9 см.
Ответ: Расстояние между точками A и B составляет 10.9 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili