Вопрос задан 01.07.2023 в 17:00. Предмет Геометрия. Спрашивает Стороженко Юлия.

Написать уравнение сферы с центром в точке (3; -2; 4) и радиусом 6

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жукова Рина.

Ответ:

(x-3)² + (y+2)² + (z-4)² = 36

Объяснение:

Уравнение сферы с центром в точке x0,y0,z0 и радиусом R имеет вид

(x-x0)² + (y-y0)² + (z-z0)² = R²

Значит, нужное уравнение: (x-3)² + (y+2)² + (z-4)² = 36

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Уравнение сферы с центром в точке (x0,y0,z0)=(3,2,4)(x_0, y_0, z_0) = (3, -2, 4) и радиусом r=6r = 6 можно записать в следующем виде:

(xx0)2+(yy0)2+(zz0)2=r2(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2

Подставляя значения центра и радиуса, получаем окончательное уравнение:

(x3)2+(y+2)2+(z4)2=62(x - 3)^2 + (y + 2)^2 + (z - 4)^2 = 6^2

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос