Вопрос задан 24.06.2023 в 08:27. Предмет Геометрия. Спрашивает Бутчик Вася.

В прямоугольном треугольнике ABC угол C=90° угол A=30° BC=7см. найди гипотенузу треугольника

помогите пожалуйста, срочно​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вараксин Максим.

Ответ:

14 см

Объяснение:

  • В прямоугольном треугольнике катет, лежащий против угла в 30°, равен половине гипотенузы.

BC=\dfrac{1}{2}AB

AB = 2 · BC = 2 · 7 = 14 см


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения гипотенузы треугольника ABC вам понадобится использовать тригонометрические функции, такие как синус и косинус.

У вас уже есть известные данные:

Угол C = 90° (прямой угол) Угол A = 30° BC = 7 см

Гипотенуза треугольника обозначается буквой "AB". Для нахождения её длины можно использовать тригонометрические отношения.

Сначала найдем длину стороны AC, которая лежит напротив угла A. Мы знаем, что:

sin(A) = противоположая сторона / гипотенуза

sin(30°) = AC / AB

Теперь подставим значения и решим уравнение:

sin(30°) = AC / AB sin(30°) = (7 см) / AB

Для sin(30°) можно воспользоваться табличными значениями или калькулятором. Sin(30°) равен 0.5.

0.5 = 7 см / AB

Теперь найдем AB:

AB = 7 см / 0.5 AB = 14 см

Итак, гипотенуза треугольника ABC равна 14 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос