
Вопрос задан 23.06.2023 в 10:36.
Предмет Геометрия.
Спрашивает Афанасьев Ваня.
Вычисли объём куба, если площадь одной грани Sгр.=256см2. Ответ: Vкуба= см3


Ответы на вопрос

Отвечает Бобров Федя.
Ответ:
V куба= 16³=4096 см³
Объяснение:
V куба= 16³=4096 см³



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Объем куба можно вычислить, используя формулу:
V = a^3
где V - объем куба, а - длина одной из его сторон.
Дано, что площадь одной грани Sгр. = 256 см². Так как куб имеет 6 граней, каждая из которых имеет форму квадрата, то площадь каждой грани равна Sгр. = a^2. Следовательно:
a^2 = 256 см²
Чтобы найти a, извлеките квадратный корень обеих сторон:
a = √(256 см²) = 16 см
Теперь, когда у нас есть длина стороны куба (a), мы можем найти его объем:
V = a^3 = 16 см * 16 см * 16 см = 4096 см³
Ответ: Vкуба = 4096 см³.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili