
Основания трапеции, в которую можно вписать окружность, равны 24 см и 32 см. Найдите периметр
трапеции. Помогите пожалуйста!!!

Ответы на вопрос

Ответ:
так как в трапецию можно вписать окружность a+b=2c
сумма оснований равна сумме боковых сторон.
c=(24+32)/2=28
P= 24+32+2*28=56+56=112



Для нахождения периметра трапеции, в которую можно вписать окружность, можно воспользоваться следующими шагами:
Найдите радиус вписанной окружности. Это можно сделать с помощью формулы:
Радиус (r) = (большее основание - меньшее основание) / 2 = (32 см - 24 см) / 2 = 4 см.
Теперь мы знаем радиус вписанной окружности, и можем найти высоту трапеции (h). Высота трапеции равна радиусу вписанной окружности, поэтому h = 4 см.
Теперь нам известны основания (a и b) и высота (h) трапеции. Мы можем использовать формулу для нахождения периметра трапеции:
Периметр = a + b + 2 * (сумма длин боковых сторон)
В данном случае, сумма длин боковых сторон равна периметру вписанной окружности (P = 2 * π * r):
Периметр = 24 см + 32 см + 2 * 3.14 * 4 см = 24 см + 32 см + 25.12 см = 81.12 см.
Таким образом, периметр трапеции равен 81.12 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili