
Знайдіть кути чотирикутника якщо їхні градусів міри відносяться 2; 4; 7; 11;


Ответы на вопрос

Ответ:
30°;60°;210°;330°
Объяснение:
Сумма углов в четырехугольнике 360°
Пусть градусная мера первого угла будет 2х°; второго - 4х°; третьего - 7х°; четвертого - 11х°.
Составляем уравнение.
2х+4х+7х+11х=360
24х=360
х=360/24
х=15
2*15=30° градусная мера первого угла
4*15=60° - второго угла
7*30=210° - третьего угла
11*30=330° - четвертого



Для знаходження кутів чотирикутника, ми можемо використати суму всіх кутів чотирикутника, яка дорівнює 360 градусів. Задані градусні міри кутів відносяться як 2:4:7:11.
Давайте позначимо градусні міри кутів як 2x, 4x, 7x і 11x, де x - це певний коефіцієнт.
Тоді ми можемо записати рівняння:
2x + 4x + 7x + 11x = 360
Згрупуємо подібні члени:
24x = 360
Поділимо обидві частини на 24:
x = 360/24
x = 15
Тепер ми можемо знайти градусні міри кожного кута, підставивши значення x:
2x = 2 * 15 = 30 градусів 4x = 4 * 15 = 60 градусів 7x = 7 * 15 = 105 градусів 11x = 11 * 15 = 165 градусів
Отже, градусні міри кутів чотирикутника складають: 30 градусів, 60 градусів, 105 градусів і 165 градусів.


Похожие вопросы

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili